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I. ABSTRACT

Many breakthroughs in speed and accuracy of single im-
age super-resolution (SISR) have been achieved. One of the
biggest challenges is how to recover finer texture details
when super-resolution is applied at large upscaling factors. A
typical solution to SISR involves using a convolutional neural
network (CNN), however new approaches using a generative
adversarial network (GAN) are now also popular. The behavior
of optimization-based super-resolution methods is principally
driven by the choice of the objective function. In this work, we
present an evaluation of SRResNet and SRGAN. SRResNet is
a deep residual network and SRGAN is a generative adver-
sarial network for image super-resolution (SR). SRResNet is
able to recover reasonable quality photo-realistic textures from
heavily downsampled images. SRGAN is capable of inferring
photo-realistic natural images with high upscaling factors. This
is achieved using a perceptual loss function which consists of
an adversarial loss and a content loss. The adversarial loss
pushes the solution to the natural image manifold using a
discriminator network that is trained to differentiate between
the super-resolved images and original photo-realistic images.
The content loss is motivated by perceptual similarity instead
of similarity in pixel space.

II. INTRODUCTION

The challenging task of estimating and predicting a high-
resolution (HR) image from its low-resolution (LR) coun-
terpart is referred to as super-resolution (SR). SR received
substantial attention from within the computer vision research
community and has a wide range of applications [1], [2], [3].

The optimization target of a supervised SR algorithms is
typically the minimization of the mean squared error (MSE)
between the recovered HR image and the ground truth. This
is convenient as minimizing MSE also maximizes the peak
signal-to-noise ratio (PSNR), which is a common measure
used to evaluate and compare SR algorithms [4]. However, the
ability of MSE to capture perceptually important differences,
such as high level texture detail, is very limited as they are
defined based on pixel-wise image differences [5], [6], [7].

In this work we present an evaluation of a super-resolution
deep residual network with skip-connections (SRResNet)
and super-resolution generative adversarial network (SRGAN)
which also employs the use of SRResNet. SRResNet uses
the MSE as the primary optimization target, while SRGAN
is able to diverge from MSE as the sole optimization target
and improve on performance and visual quality of results. New
perceptual loss is also defined which uses high-level feature

maps of the VGG network [8], [9], [10] in combination with
a discriminator that encourages solutions perceptually hard to
distinguish from the HR reference images.

A. Related work

1) Image super-resolution: Some of the recent overview
articles on image SR include Nasrollahi and Moeslund [3] or
Yang et al. [4]. In our analysis we are focusing on single
image super-resolution (SISR). However, there exist many
approaches that recover HR images from multiple images [11],
[12].

One of the first methods to tackle SISR were prediction-
based methods. These are usually filtering approaches, such as
linear, bicubic or Lanczos [13] filtering. Mentioned approaches
can be very fast, however they oversimplify the SISR problem
and usually yield solutions with overly smooth texture results.
Methods that put particularly focus on edge-preservation have
also been proposed [14], [15].

More powerful and advanced approaches aim to estab-
lish a complex mapping between low-resolution and high-
resolution image information. These approaches usually rely
on the training data. Many other methods, which are based
on example-pairs, rely on LR training patches for which the
corresponding HR counterparts are known. Early work was
done and presented by Freeman et al. [16], [17].

Recently, convolutional neural network (CNN) based SR
algorithms have shown excellent performance. In Wang et
al. [18] the authors encode a sparse representation and use
their feed-forward network architecture which is based on the
learned iterative shrinkage and threshold algorithm [19]. In
Dong et al. [20], [21] authors used bicubic interpolation to
upscale an input image and trained a three layer deep fully
convolutional network in an end-to-end fashion to achieve
good performance in SR.

2) Loss functions: It is notable that pixel-wise loss func-
tions (such as MSE) struggle to handle the uncertainty which is
inherent in recovering high-frequency details (e.g. a texture).
Minimizing MSE encourages finding of pixel-wise averages
of plausible solutions which are generally smooth and thus
give us poor perceptual quality [10], [22], [9]. The problem
of minimizing MSE is illustrated in figure 1, where multiple
potential solutions, with high texture details, are averaged to
create a smooth reconstruction.

In Mathieu et al. [22] and Denton et al. [23] the authors
tackled this problem by employing generative adversarial
networks (GANs) for the application of image generation.



Fig. 1. Depiction of image patches from the natural image manifold (red),
super-resolved image patches obtained with MSE (blue) and super-resolved
image patches obtained with GAN (orange). The MSE-based solution appears
overly smooth due to the pixel-wise average of possible solutions in the pixel
space, while GAN-based solution drives the reconstruction towards the natural
image manifold producing perceptually more convincing solutions.

Work of Dosovitskiy and Brox [24] uses loss functions
based on Euclidean distances computed in the feature space of
neural networks in combination with adversarial training. It is
shown that the proposed loss allows visually superior image
generation and can be used to solve the ill-posed inverse prob-
lem of decoding nonlinear feature representations. Similarly,
Johnson et al. [9] and Bruna et al. [10] propose the use of
features extracted from a pre-trained VGG network instead
of low-level pixel-wise error measures. The authors formulate
a loss function, which is based on the euclidean distance
between feature maps that are extracted from the VGG19
network. Perceptually more convincing results were obtained
for both super-resolution and artistic style-transfer [25], [26].

B. Contribution

GANs provide a powerful way for generating plausible-
looking natural images which give us high perceptual quality.
The GAN procedure encourages the reconstructions to move
towards regions of the search space with high probability of
containing photo-realistic images. This brings us closer to the
natural image manifold as shown in figure 1.

In this work we describe and analyze the first very deep
ResNet architecture using the concept of GANs to form a
perceptual loss function for photo-realistic SISR [27]. The key
aspects of this work are:

• a new state of the art for image SR with high upscaling
factors (4×) as measured by PSNR and structural sim-
ilarity (SSIM) with 16 blocks deep ResNet (SRResNet)
optimized for MSE;

• proposed SRGAN which is a GAN-based network op-
timized for a new perceptual loss. Here the MSE-based
content loss was replaced with a loss calculated on feature
maps of the VGG network, which are more invariant to
changes in pixel space [28].

We describe the network architecture and the perceptual loss

in section III. An evaluation is provided in section IV. The
work concludes with section V

III. METHOD

The aim of SISR is to create a super-resolved image ISR,
which is an approximation of a high-resolution image IHR

from a low-resolution input image ILR. Here ILR is the low-
resolution image version of its high-resolution image coun-
terpart IHR. The high-resolution images are only available
during training. In training, ILR is obtained by applying a
Gaussian filter to IHR followed by a downsampling operation
with downsampling factor r. For an image with C color
channels, we describe ILR by a real-valued tensor of size
W×H×C, IHR by rW×rH×C and ISR by rW×rH×C.

The ultimate goal is to train a generating function G that
estimates for a given LR input image its corresponding HR
counterpart. This is achieved by training a generator network
as a feed-forward CNN GθG parameterized by θG. Here
θG = {W1:L; b1:L} denotes the weights and biases of a L-
layer deep network and is obtained by optimizing a SR-specific
loss function lSR. For training images IHR

n , n = 1, ..., N with
corresponding ILR

n , n = 1, ..., N , we solve:

θ̂G = argmin
θG

1

N

N∑
n=1

lSR(GθG(I
LR
n ), IHR

n ) (1)

In this work we will use perceptual loss lSR which is
specifically designed as a weighted combination of several loss
components that model distinct desirable characteristics of the
recovered SR image.

1) Adversarial network architecture: A discriminator net-
work DθD is defined and based on Goodfellow et al. [29]
which is optimized in an alternating manner along with GθG

to solve the adversarial min-max problem:

min
θG

min
θD

EIHR∼ptrain(IHR)[logDθD (I
HR)]+

EILR∼pG(ILR)[log(1−DθD (GθG(I
LR)))]

(2)

The general idea behind this formulation is that it allows
one to train a generative model G with the goal of fooling
a differentiable discriminator D that is trained to distinguish
super-resolved images from real images. With this approach
this generator can learn to create solutions that are highly
similar to real images and thus difficult to classify by discrim-
inator D. This encourages the manifestation of perceptually
superior solutions that reside in the subspace of natural images
(the manifold). This approach is in contrast to SR solutions
obtained by minimizing pixel-wise error measurements, such
as the MSE.

The generator architecture is illustrated in figure 2 and the
discriminator architecture in figure 3. At the core of the very
deep generator network G are B residual blocks with identical
layout. Two convolutional layers are used with small 3 × 3
kernels and 64 feature maps followed by batch-normalization
layers and ParametricReLU as the activation function. The
resolution of the input image is increased with two trained
sub-pixel convolution layers.



Fig. 2. Architecture of generator network with corresponding kernel size (k), number of feature maps (n) and stride (s) indicated for each convolutional
layer.

Fig. 3. Architecture of discriminator network with corresponding kernel size (k), number of feature maps (n) and stride (s) indicated for each convolutional
layer.

To discriminate real HR images from generated SR samples
a discriminator network is trained. LeakyReLU activation
is used (α = 0.2) and max-pooling is avoided throughout
the network. The discriminator network is trained to solve
the maximization problem in Equation III-1. It contains 8
convolutional layers with an increasing number of 3× 3 filter
kernels, increasing by a factor of 2 from 64 to 512 kernels.
Strided convolutions are used to reduce the image resolution
each time the number of features is doubled. The resulting
512 feature maps are followed by two dense layers and a final
sigmoid activation function to obtain a probability for sample
classification.

A. Perceptual loss function
The definition the perceptual loss function lSR is critical for

the performance of the generator network. This formulation of
the perceptual loss is as the weighted sum of a content loss
(lSR
X ) and an adversarial loss (lSR

Gen) component as:

lSR = lSR
X + 10−3lSR

Gen (3)

1) Content loss: The pixel-wise MSE loss is calculated as:

lSR
MSE =

1

r2WH

rW∑
x=1

rH∑
y=1

(IHR
x,y −GθG(I

LR)x,y)
2 (4)

This is one of the most widely used optimization target
for image SR on which many state-of-the-art approaches

rely [20], [30]. However, while achieving particularly high
PSNR, solutions of MSE optimization problems often lack
high-frequency content which results in perceptually unsat-
isfying and unpleasing solutions with overly smooth texture
details.

Better choice would be to use a loss function that is closer
to perceptual similarity. The VGG loss is defined based on
the ReLU activation layers of the pre-trained 19 layer VGG
network.

With ϕi,j we indicate the feature map obtained by the j-th
convolution (after activation) before the i-th maxpooling layer
within the VGG19 network.The VGG loss is then defined as
the euclidean distance between the feature representations of a
reconstructed image GθG(I

LR) and the reference image IHR:

lSR
V GG/i.j =

1

Wi,jHi,j

Wi,j∑
x=1

Hi,j∑
y=1

(ϕi,j(I
HR)x,y−

ϕi,j(GθG(I
LR))x,y)

2

(5)

Here Wi,j and Hi,j describe the dimensions of the respective
feature maps within the VGG network.

2) Adversarial loss: In addition to the content losses de-
scribed so far, the generative component of this GAN is also
added to the perceptual loss. This encourages our network to
favor solutions that reside on the manifold of natural images,
when trying to fool the discriminator network.

The generative loss lSR
Gen is defined based on the probabil-



ities of the discriminator DθD (GθG(I
LR)) over all training

samples as:

lSR
Gen =

N∑
n=1

−logDθD (GθG(I
LR)) (6)

Here, DθD (GθG(I
LR)) is the probability that the recon-

structed image GθG(I
LR) is a natural HR image. For better

gradient behavior we minimize −logDθD (GθG(I
LR)) instead

of log(1−DθD (GθG(I
LR))) [29].

IV. EXPERIMENTS AND EVALUATION

Training is done on the COCO training set 2014 and vali-
dation is performed with COCO validation set 2014. Testing
and evaluation of experiments is performed on four widely
used public benchmark datasets: COCO testing set 2014, Set5,
Set14 and BSD100, the testing set of BSD300.

All experiments are performed with a scale factor of 4×
between low-resolution and high-resolution images. This cor-
responds to a 16× reduction in number of image pixels.

A. Base model

The base model follows the architectural implementation of
original model as described in [27] and is used as a base for
other evaluations.

The base model uses Adam as an optimizer with β1 =
0.9 The SRResNet network is trained with a learning rate of
10−4 and 106 update iterations, which yield 200 epochs in
total on our training dataset. The trained SRResNet network
is based on MSE loss and in used as initialization for generator
when training the actual GAN to avoid undesired local optima.
The SRGAN network is based on perceptual loss and trained
with 10−5 update iterations at a learning rate of 10−4 and
another 105 iterations at a lower learning rate of 10−5, which
yield 40 epochs in total on our training dataset Updates to the
generator and discriminator network are alternating (k = 1).
The generator network has 16 identical residual blocks (B =
16).

The evaluation results of the base model are presented in
table I. We can observe that SRResNet gives better numerical

COCO Loss COCO PSNR COCO SSIM Set5 Loss Set5 PSNR Set5 SSIM
SRResNet 0.0219 27.3166 0.7766 0.0084 30.6233 0.8899
SRGAN 0.1938 25.3691 0.6998 0.2755 27.6378 0.8098

Set14 Loss Set14 PSNR Set14 SSIM BSD100 Loss BSD100 PSNR BSD100 SSIM
SRResNet 0.0116 28.5642 0.7977 0.0140 27.3658 0.7509
SRGAN 0.1935 25.9921 0.7149 0.1802 25.1075 0.6653

TABLE I
EVALUATION RESULTS OF THE BASE MODEL.

results across the all testing datasets. This phenomenon is also
observer in the original paper [27].

Loss, PSNR and SSIM with respect to the number of epochs
for SRResNet can be seen on figure 4. Loss, PSNR and SSIM
with respect to the number of epochs for SRGAN can be seen
on figure 5. We can observe a steady decrease in loss for both
SRResNet and SRGAN. There is also a slight gap between
validation and train set. For SRResNet it looks like a case of
overfitting.

Fig. 4. Loss, PSNR and SSIM with respect to the number of epochs for
SRResNet for the base model.

On figure 6 we present an example of super-resolved image.
We can see that bot, SRResNet and SRGAN, give superior
results compared to bicubic upsampling. Although SRResNet
gives better results than plan bicubic upsampling, the final
result is overly smooth. SRGAN give much more natural
results and is also able to create fine texture details.

Similar results can be see in example on figure 7. SRResNet
gives overly smooth yet better result than plain bicubic upsam-
pling. SRGAN on the other hand presents us with much finer
detail (note the grass on the ground and skin of the elephants).

Sometimes there is little difference between SRResNet and
SRGAN. This can be partially observed on figure 8. Due
to the smooth nature of the texture on the bananas, there is
little difference between SRResNet and SRGAN. Note that the
perceptually convincing reconstruction of text on the sticker
is not well realized.



Fig. 5. Loss, PSNR and SSIM with respect to the number of epochs for
SRGAN for the base model.

Final example is presented on figure 9. Similarly to previous
examples SRResNet gives slightly smoother results than SR-
GAN. This time one might argue that SRResNet gives more
pleasing results when compared to SRGAN.

B. Epochs

Here we explore the effect of increasing number of epochs
during the training phase.

The evaluation results of the increasing number epochs are
presented in table II. We can observe that SRResNet gives
better numerical results across the all testing datasets.

Loss, PSNR and SSIM with respect to the number of epochs
for SRResNet can be seen on figure 10. Loss, PSNR and
SSIM with respect to the number of epochs for SRGAN can
be seen on figure 11. We can observe a steady decrease in loss
for both SRResNet and SRGAN. We also see that increasing

Fig. 6. An example of super-resolved image from Set14. Top left is LR
image, top right is SR image using SRResNet, bottom left is SR image using
SRGAN, bottom right is original image in HR.

Fig. 7. An example of super-resolved image from BSD100. Top left is LR
image, top right is SR image using SRResNet, bottom left is SR image using
SRGAN, bottom right is original image in HR.

COCO Loss COCO PSNR COCO SSIM Set5 Loss Set5 PSNR Set5 SSIM
SRResNet 0.0183 27.2895 0.7784 0.0088 30.1063 0.8914
SRGAN 0.1945 25.2257 0.7048 0.2776 27.0301 0.8204

Set14 Loss Set14 PSNR Set14 SSIM BSD100 Loss BSD100 PSNR BSD100 SSIM
SRResNet 0.0114 28.5675 0.7990 0.0153 27.1376 0.7491
SRGAN 0.1834 25.9390 0.7180 0.1787 25.1277 0.6666

TABLE II
EVALUATION RESULTS OF INCREASED NUMBER OF EPOCHS.

the number of epochs helped in improving the model and
diminishing the gap between training and validation losses.



Fig. 8. An example of super-resolved image from COCO test 2014. Top left
is LR image, top right is SR image using SRResNet, bottom left is SR image
using SRGAN, bottom right is original image in HR.

Fig. 9. An example of super-resolved image from Set5. Top left is LR
image, top right is SR image using SRResNet, bottom left is SR image using
SRGAN, bottom right is original image in HR.

C. Batch size

Here we explore the effect of the different batch sizes used
during the training phase.

The evaluation results of the different batch sizes are
presented in table III. We can observe that SRResNet, with
a batch size of 16 gives overall best numerical results across
the all testing datasets.

Loss, PSNR and SSIM with respect to the number of epochs
for SRResNet can be seen on figure 12. Loss, PSNR and SSIM

Fig. 10. Loss, PSNR and SSIM with respect to the number of epochs for
SRResNet for increased number of epochs.

with respect to the number of epochs for SRGAN can be seen
on figure 13. We can observe a steady decrease in loss for both
SRResNet and SRGAN. The lower number of batch sizes seem
to be beneficial for SRResNet loss and PSNR, while SRResNet
SSIM seems best at around 16. Best SRGAN loss and SSIM
is achieved with larger batch sizes, while the PSNR looks best
with smaller batch sizes.

D. Optimizer learning rate

Here we explore the effect of the different optimizers and
different learning rates used during the training phase.

The evaluation results of the Adam optimizer and different
learning rates are presented in table IV. We can observe that
using Adam optimizer with learning rate 10−4 yields best
results.

Loss, PSNR and SSIM with respect to the number of



Fig. 11. Loss, PSNR and SSIM with respect to the number of epochs for
SRGAN for increased number of epochs.

epochs for SRResNet using Adam optimizer can be seen on
figure 14. Loss, PSNR and SSIM with respect to the number
of epochs for SRGAN using Adam optimizer can be seen on
figure 15. We can confirm that using Adam optimizer with
learning rate 10−4 yields best results for both SRResNet and
SRGAN. Increasing the learning rate has a negative impact on
performance, while decreasing the learning rate has a positive
impact on performance.

The evaluation results of the SGD optimizer and different
learning rates are presented in table V. We can observe that
using SGD optimizer with learning rate 10−1 yields best
results on all testing datasets.

Loss, PSNR and SSIM with respect to the number of
epochs for SRResNet using SGD optimizer can be seen on
figure 16. Loss, PSNR and SSIM with respect to the number
of epochs for SRGAN using SGD optimizer can be seen

COCO Loss COCO PSNR COCO SSIM Set5 Loss Set5 PSNR Set5 SSIM
SRResNet, 1 0.0143 27.8191 0.7782 0.0050 31.6714 0.8969
SRGAN, 1 0.2420 19.6681 0.6479 0.2208 28.5091 0.8620

SRResNet, 2 0.0139 27.9936 0.7858 0.0048 31.7809 0.9004
SRGAN, 2 0.2865 16.1535 0.5405 0.2465 24.8239 0.8378

SRResNet, 4 0.0137 28.0711 0.7868 0.0046 31.9375 0.9015
SRGAN, 4 0.3593 15.7794 0.5945 0.4470 13.3654 0.6416

SRResNet, 8 0.0137 28.0657 0.7877 0.0046 31.9493 0.9017
SRGAN, 8 0.2156 22.9547 0.6767 0.3313 20.6688 0.7466

SRResNet, 16 0.0136 28.1025 0.7883 0.0046 31.9345 0.9023
SRGAN, 16 0.1905 25.8082 0.7057 0.2529 29.1558 0.8324

SRResNet, 32 0.0276 27.0769 0.7799 0.0046 31.9011 0.9007
SRGAN, 32 0.1945 25.3633 0.7006 0.2484 29.0209 0.8382

SRResNet, 64 0.0137 28.0807 0.7873 0.0047 31.9276 0.9015
SRGAN, 64 0.1850 25.7564 0.7086 0.2374 29.1578 0.8449

SRResNet, 128 0.0137 28.0664 0.7872 0.0047 31.9168 0.9015
SRGAN, 128 0.1925 25.5932 0.7023 0.2397 29.1346 0.8411

SRResNet, 256 0.0139 28.0023 0.7852 0.0048 31.8391 0.9005
SRGAN, 256 0.1862 25.4428 0.7020 0.2419 28.9599 0.8410

SRResNet, 512 0.0141 27.9223 0.7832 0.0049 31.7255 0.8993
SRGAN, 512 0.1833 25.4843 0.7029 0.2449 29.1373 0.8444

Set14 Loss Set14 PSNR Set14 SSIM BSD100 Loss BSD100 PSNR BSD100 SSIM
SRResNet, 1 0.0118 28.4080 0.7926 0.0135 27.3937 0.7475
SRGAN, 1 0.2027 22.6563 0.7173 0.2393 20.1547 0.6132

SRResNet, 2 0.0115 28.5317 0.7977 0.0132 27.5089 0.7539
SRGAN, 2 0.2389 20.2460 0.6603 0.2649 18.7091 0.5400

SRResNet, 4 0.0115 28.5848 0.7980 0.0130 27.5693 0.7546
SRGAN, 4 0.2629 20.4511 0.6664 0.3252 19.7112 0.6073

SRResNet, 8 0.0114 28.6114 0.7989 0.0130 27.5384 0.7553
SRGAN, 8 0.1932 24.6153 0.7041 0.1901 24.2988 0.6561

SRResNet, 16 0.0114 28.6075 0.7993 0.0130 27.5998 0.7559
SRGAN, 16 0.1793 26.2713 0.7173 0.1781 25.3709 0.6676

SRResNet, 32 0.0119 28.5291 0.7982 0.0132 27.5172 0.7550
SRGAN, 32 0.1857 25.9926 0.7064 0.1851 25.1500 0.6614

SRResNet, 64 0.0114 28.6219 0.7989 0.0130 27.5743 0.7551
SRGAN, 64 0.1781 25.8796 0.7043 0.1775 24.9667 0.6583

SRResNet, 128 0.0115 28.6023 0.7987 0.0131 27.5668 0.7551
SRGAN, 128 0.1808 25.7765 0.6992 0.1882 24.8520 0.6498

SRResNet, 256 0.0116 28.5298 0.7967 0.0131 27.5262 0.7536
SRGAN, 256 0.1782 25.6421 0.7005 0.1818 24.5470 0.6457

SRResNet, 512 0.0118 28.4319 0.7953 0.0133 27.4700 0.7523
SRGAN, 512 0.1780 25.7628 0.7017 0.1787 24.4982 0.6435

TABLE III
EVALUATION RESULTS OF THE DIFFERENT BATCH SIZES.

COCO Loss COCO PSNR COCO SSIM Set5 Loss Set5 PSNR Set5 SSIM
SRResNet, 1e-1 1.4228 13.1536 0.4244 1.5209 12.6921 0.3888
SRGAN, 1e-1 0.2787 12.1388 0.4128 0.3264 12.1870 0.3806

SRResNet, 1e-2 0.4239 12.7827 0.4007 0.3967 13.1758 0.4630
SRGAN, 1e-2 0.2787 12.1388 0.4128 0.3264 12.1870 0.3806

SRResNet, 1e-3 0.0138 28.0172 0.7867 0.0047 31.8344 0.9008
SRGAN, 1e-3 0.1995 25.3966 0.6964 0.2556 28.8420 0.8385

SRResNet, 1e-4 0.0153 28.0184 0.7862 0.0047 31.9811 0.9012
SRGAN, 1e-4 0.1969 24.8958 0.6969 0.2872 26.3803 0.8078

SRResNet, 1e-5 0.0141 27.9295 0.7833 0.0049 31.7169 0.8990
SRGAN, 1e-5 0.2128 24.4837 0.7093 0.3560 24.9329 0.8307

SRResNet, 1e-6 0.0155 27.4038 0.7657 0.0060 30.9854 0.8848
SRGAN, 1e-6 0.2115 24.3678 0.7325 0.3368 23.5866 0.8350

SRResNet, 1e-7 0.0179 26.6381 0.7394 0.0095 29.5271 0.8458
SRGAN, 1e-7 0.1977 25.7059 0.7565 0.2653 26.5974 0.8601

Set14 Loss Set14 PSNR Set14 SSIM BSD100 Loss BSD100 PSNR BSD100 SSIM
SRResNet, 1e-1 1.3285 13.8049 0.3816 1.4595 14.6831 0.3827
SRGAN, 1e-1 0.2395 12.4859 0.3669 0.2602 13.7321 0.3799

SRResNet, 1e-2 0.4709 12.1461 0.3631 0.4628 12.3999 0.3143
SRGAN, 1e-2 0.2395 12.4859 0.3669 0.2602 13.7321 0.3799

SRResNet, 1e-3 0.0114 28.6002 0.7989 0.0131 27.5206 0.7552
SRGAN, 1e-3 0.1925 25.5104 0.6952 0.1921 24.9167 0.6557

SRResNet, 1e-4 0.0114 28.6433 0.7995 0.0130 27.5729 0.7557
SRGAN, 1e-4 0.1941 25.6344 0.7101 0.1829 24.9255 0.6595

SRResNet, 1e-5 0.0120 28.3930 0.7942 0.0132 27.4897 0.7525
SRGAN, 1e-5 0.2106 25.9821 0.7258 0.1926 24.9634 0.6649

SRResNet, 1e-6 0.0129 27.9709 0.7810 0.0141 27.1546 0.7394
SRGAN, 1e-6 0.2056 26.2074 0.7590 0.1858 25.2086 0.6983

SRResNet, 1e-7 0.0159 26.9259 0.7522 0.0159 26.5549 0.7179
SRGAN, 1e-7 0.1812 27.3106 0.7838 0.1804 26.2667 0.7324

TABLE IV
EVALUATION RESULTS OF ADAM OPTIMIZER AT DIFFERENT LEARNING

RATES.

on figure 17. We can confirm that using SGD optimizer
with learning rate 10−1 yields best results for SRResNet.
Here decreasing the learning rate has a negative impact on
performance, while increasing the learning rate has a positive
impact on performance. Similarly we can say about SRGAN,
with an exception of learning rate 10−2, which gives poor
results.

The evaluation results of the ADAGRAD optimizer and
different learning rates are presented in table VI. We can
observe that using ADAGRAD we minimize loss when using
learning rate 10−3. PSNR is minimized when using learning
rate 10−6 and SSIM is minimized when using learning rate
10−7.

Loss, PSNR and SSIM with respect to the number of epochs



Fig. 12. Loss, PSNR and SSIM with respect to the number of epochs for
SRResNet for different batch sizes.

for SRResNet using ADAGRAD optimizer can be seen on
figure 18. Loss, PSNR and SSIM with respect to the number of
epochs for SRGAN using ADAGRAD optimizer can be seen
on figure 19. We can confirm that using ADAGRAD optimizer
with learning rate 10−3 yields best results for SRResNet and
SRGAN. Using learning rate 10−1 has negative impact on
performance.

The evaluation results of the RMSPROP optimizer and
different learning rates are presented in table VII. We can
observe that using RMSPROP optimizer with learning rate
10−4 yields best results across all testing datasets.

Loss, PSNR and SSIM with respect to the number of epochs
for SRResNet using RMSPROP optimizer can be seen on
figure 20. Loss, PSNR and SSIM with respect to the number
of epochs for SRGAN using RMSPROP optimizer can be seen
on figure 21. We can confirm that using RMSPROP optimizer

Fig. 13. Loss, PSNR and SSIM with respect to the number of epochs for
SRGAN for different batch sizes.

with learning rate 10−4 yields best results for SRResNet
and SRGAN. Using learning rate 10−1 or 10−2 has negative
impact on performance and causes unstable results.

E. Number of residual blocks

Here we explore the effect of different number of residual
blocks in SRResNet and generator part or SRGAN.

The evaluation results of the different number of residual
blocks are presented in table VIII. We can observe that using
16 residual blocks yields best results on all testing datasets.

Loss, PSNR and SSIM with respect to the number of epochs
for SRResNet can be seen on figure 22. Loss, PSNR and SSIM
with respect to the number of epochs for SRGAN can be seen
on figure 23. We observe that using 8 or 16 residual blocks
gives the most table results ob both SRResNet and SRGAN.
We can also see that increasing the residual blocks further
increases the loss on the validation set.



Fig. 14. Loss, PSNR and SSIM with respect to the number of epochs for
SRResNet for using Adam optimizer at different learning rates.

V. CONCLUSION

We have described a deep residual network SRResNet and
a generative adversarial network SRGAN. SRResNet can give
us plausible results in certain circumstances, where an image
in question is naturally smooth. SRGAN uses combination of
content loss and adversarial loss to give us much more detail
results.

We can note that the ideal loss function depends on the
application. Approaches that try to create finer texture detail
might be generally desirable, but less suited for medical
applications. The perceptually convincing reconstruction of
text is also very challenging to realize. The development of
content loss functions that describe image spatial content, that
are more invariant to changes in pixel space, will further
improve photo-realistic image SR results.

It is also worth mentioning that standard quantitative mea-

Fig. 15. Loss, PSNR and SSIM with respect to the number of epochs for
SRGAN for using Adam optimizer at different learning rates.

sures (such as PSNR and SSIM) fail to capture and accurately
assess the image quality with respect to the human visual
system perception.

Of particular importance when aiming for photo-realistic
solutions to the SR problem is the choice of the content loss
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Fig. 21. Loss, PSNR and SSIM with respect to the number of epochs for
RMSPROP for using Adam optimizer at different learning rates.

Fig. 22. Loss, PSNR and SSIM with respect to the number of epochs for
SRResNet for the different number of residual blocks.



Fig. 23. Loss, PSNR and SSIM with respect to the number of epochs for
SRGAN for the different number of residual blocks.


